Modification of the Surface Acidity of γ -Alumina

Catalytic activity is considered to depend strongly upon the surface acidity (1). Titration with amines and indicator adsorption have been used to determine the surface acidity of oxide catalysts (2, 3). Electronic spectra of adsorbed Hammett indicators (4), photoacoustic spectroscopy (5), and ir spectroscopy (6, 7) are also currently employed to estimate the acid sites on surfaces of oxides and supports.

We report here the modification of the acid sites on surfaces of several samples of γ -Al₂O₃ by acid treatment. We have carried out a quantitative determination of their acid site content by means of a spectrophotometric method (8, 9) using pyridine and quinoline as titrants. All chemicals were reagent-grade, samples were prepared from a Girdler γ -Al₂O₃ with a BET surface area of 188 m² g⁻¹ and a pore volume of 0.39 cm³ g^{-1} . γ -Al₂O₃ samples (4.5 g) were treated with distilled water (60 cm³) at pH 7.00 in the case of nonprotonated γ -Al₂O₃, or with standardized solutions of HNO₃ (60 cm³) at different concentrations in the case of protonated γ -Al₂O₃, always with stirring for 12 h. Suspensions were filtered, and solids were dried under vacuum at 393 K for 12 h. (Drving at temperatures between 393 and 723 K resulted in similar acid site content of equal or lower pK_a 's than pyridine or quinoline.) These dry and protonated γ -Al₂O₃ samples modify the physical characteristics and catalytic activity of supported metal catalysts for ammonia synthesis by comparison with a dry nonprotonated γ - $Al_2O_3(10).$

The quantitative determination of the acid site content of either nonprotonated γ -Al₂O₃ or the protonated γ -Al₂O₃ was followed by uv spectrophotometry with cyclohexane solutions of pyridine or quinoline as titrants. As soon as adsorption of the titrant

upon the solid remained constant, formation of a monolayer of base upon the acid sites with equal or lower pK_a 's was assumed (8, 9).

Applying the equation of a Langmuir isotherm:

$$C/X = 1/(bX_{\rm m}) + C/X_{\rm m}$$
 (1)

where C = concentration of nonadsorbed base (measured by uv spectrophotometry) in equilibrium with the adsorbed base upon the solid, X = adsorbed base per gram of solid, b = constant, $X_m =$ adsorbed base per gram of solid in monolayer conditions (assuming all of the acid sites are occupied by the titrant), we plotted C/X versus C.

FIG. 1. Titration of acid sites of pretreated γ -Al₂O₃ samples, plotted according to Eq. (1). γ -Al₂O₃ was pretreated with: \Box , distilled H₂O; \bigcirc , 500 μ mole H⁺ · g⁻¹ γ -Al₂O₃; \triangle , 5000 μ mole H⁺ · g⁻¹ γ -Al₂O₃. Solid symbols = pyridine, open symbols = quinoline.

FIG. 2. Plot of X_m against μ mole H⁺ added to γ -Al₂O₃ samples, using the following titrants: • pyridine, \bigcirc quinoline.

Straight lines adjusted by least squares with a correlation coefficient higher than 0.999 were obtained, as shown in Fig. 1.

The Langmuir model assumes that adsorbing sites of the support are homogeneous and no interaction between adsorbed molecules takes place on the surface of the support. In our case, we are dealing with heterogeneous acid sites, of which the more acid ones are first occupied by the titrating amine. However, we consider that the acid sites with equal or lower pK_a 's to that of the amine are titrated when equilibrium of adsorption is achieved. X_m would then be a measure of the acidity of the solid surface, and the value (bX_m) should grossly measure the strength of the interaction between the amine and the acid site. Values of the X_m obtained from Fig. 1 were plotted against the total micromoles of acid added per gram of solid, and Fig. 2 shows the hyperbolic curves obtained, where the plateau indicates the maximum value of X_m for each amine. The different values of X_m for pyridine and quinoline are in accordance with their different sizes and donor strengths.

These results are preliminary to a work on acid-modified γ -Al₂O₃ as a support for the preparation of ammonia synthesis catalysts.

REFERENCES

- 1. Ward, J. W., J. Catal. 9, 225 (1967).
- Benesi, H. A., J. Amer. Chem. Soc. 78, 5490 (1956).
- 3. Hirschler, A. E., J. Catal. 2, 428 (1963).
- Take, J., Tsurya, T., Sato, T., and Yoneda, Y., Bull. Chem. Soc. Jpn. 45, 3409 (1972).
- Jagannathan, K., Ganguly, P., and Rao, C. N. R., J. Catal. 75, 262 (1982).
- Lercher, J. A., and Noller, H., J. Catal. 77, 152 (1982).
- 7. Pohle, W., and Bräuer, P., J. Catal. 77, 511 (1982).
- López González, J. D., and Valenzuela Calahorro, C., An. Quim. 73, 1266 (1977); 74, 220 (1978).
- Marinas, J. M., Jiménez, C., Campelo, J. M., Aramendía, M. A., Borau, V., and Luna, D., Proc. 7° Simposio Iberoamericano de Catálisis (La Plata, Argentina, July 13-18, 1980), p. 79.
- Fierro, J. L. G., Homs, N., Ramírez de la Piscina, P., and Sueiras, J. E., Z. Phys. Chem. Neue Folge, 135, 235 (1983).

N. Homs

P. RAMÍREZ DE LA PISCINA J. E. Sueiras¹

Facultad de Química Departamento de Química Inorgánica Pl. Imperial Tarraco s/n Tarragona, Spain

Received August 4, 1983

¹ To whom all correspondence should be addressed.